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Computational quantum chemistry has advanced
dramatically in recent decades, and it is now
routinely used in concert with experimental

research. This progress stems from massive gains in
computer hardware, advances in physical models (effective
density functionals, for example), and creative numerical
algorithms that maximize the efficiency with which those
models can be solved. The exploitation of inherent sparsity,
or the pattern of zeros or near-zero terms in a matrix, is a
common theme in many of these numerical algorithms.
Simply put: why waste time computing quantities that do
not contribute significantly?

The challenge lies in the fact that the sparsity of some

particular matrix in quantum chemistry depends on the

representation of the matrix (the basis), and it is often

difficult to identify an efficient representation a priori.

Physical insight sometimes suggests an efficient representa-

tion, as in so-called local-correlation methods1 which exploit

the relatively short-range nature of electron−electron

correlations that produces zeros in the integrals involving
orbitals on opposite ends of a large molecule.

In this issue, Sanders, Andrade, and Aspuru-Guzik have
published an interesting new approach for the prediction of
molecular vibrations in electronic structure theory using
compressive sensing.2 Compressive sensing rose to prom-
inence in signal processing over the past decade, and it has
quickly spread to applications such as medical imaging,
audio processing, and even DNA microarrays. Compressive
sensing allows one to construct sparse matrices inex-
pensively, even if one does not know the specific sparsity
pattern beforehand, by randomly sampling elements in a
non-sparse representation.

In essence, compressive sensing asks: what is the minimum
number of measurements that need to be made in order to
obtain a high-quality approximation for a given signal? The

reconstruction of a high-resolution graphical image from a low-
resolution one provides a nice demonstration of the method.
As shown in Figure 1, compressive sensing (using code kindly
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Figure 1. Compressive sensing reproduces the original photograph
well even when only a fraction of the pixels are sampled.

Gregory Beran reflects on the role of
sparse sampling techniques introduced
by Aspuru-Guzik et al. to make chemistry
calculations faster.

Simply put: why waste time
computing quantities that do not

contribute significantly?

First Reactions

© 2015 American Chemical Society 14 DOI: 10.1021/acscentsci.5b00062
ACS Cent. Sci. 2015, 1, 14−15

FIRST REACTIONS

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

http://dx.doi.org/10.1021/oc5000404
http://dx.doi.org/10.1021/oc5000404
http://dx.doi.org/10.1021/acscentsci.5b00062
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


provided by Jacob Sanders) provides a very good approx-

imation to the original picture even when only a fraction of the

pixels are sampled randomly.

Compressive sensing is not magic, of course. The ability to

construct an accurate approximation to the desired matrix

with minimal sampling requires the existence of underlying

structure in the data that produces sparsity in the optimal

representation. Fortunately, real-world images contain

structures and patterns that enable compressive sensing to

reconstruct the true image effectively. Similarly, the matrices

that arise in quantum chemistry algorithms and other
scientific applications also exhibit structure, such as the
stronger couplings between adjacent atoms in molecular
vibrations, that lends them to compressive sensing.

In contrast to typical uses of compressive sensing for
postprocessing data signals (e.g., for image reconstruction or
the work by the same authors on extracting properties from
molecular dynamics trajectories3 or processing data from
multidimensional spectroscopies4), the work presented here
stands out because compressive sensing is employed here to
accelerate computation where the evaluation of individual
matrix elements forms the computational bottleneck. In this
context, the compressive sensing ideas here fit well with
other recent quantum chemistry research on techniques such
as orbital specific virtuals,5 tensor hypercontraction,6 multi-
resolution methods,7 and density matrix renormalization
group theory,8 all of which exploit sparse representations
and/or low-rank approximations to model complex wave
functions compactly.

The current work also provides a nice example of
bootstrapping more accurate results (quantum mechanical
vibrational modes) from less accurate ones (classical
molecular mechanics ones). The simpler model provides a
representation in which the matrix should be sparse, and that
knowledge in turn reduces the amount of sampling needed
to obtain an accurate approximation to the final result.

In the longer term, the article by Sanders and co-workers is
most interesting not for the specific application of
compressive sensing to the calculation of molecular
vibrations, but rather, for how it might alter our perspective
on how quantum chemistry algorithms should workby
bootstrapping our way up from simple approximations via
random sampling of the matrix elements that arise in more
accurate models. One can conceive of many potential
applications for this technique beyond the one demonstrated
here, ranging from acceleration of the repeated Fock matrix
constructions required in density functional theory to cutting
down on the extraordinary numbers of determinants
involved in a configuration interaction calculation. This
and other recent advances in sparse tensor representations in
electronic structure prove there remains considerable scope
for improvements in the algorithms which form the basis of
modern quantum chemistry, and all chemists will benefit
from the new efficiences and physical insights yielded by
these models.
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